ROC, ROC-Kurve

 

Abk. für [engl.] Receiver Operating Characteristic, Empfänger-Verhaltens-Charakteristik, [DIA, FSE], graf. Darstellung des Verhältnisses der Wahrscheinlichkeiten bzw. relativen Häufigkeiten  von Treffern (richtiges Erkennen eines Merkmals; richtig Positive) und falschem Alarm («Erkennen» eines nicht vorhandenen Merkmals; falsch Positive; Signalentdeckungstheorie) bei Verwendung eines dichotomen diagn. Entscheidungskriteriums (z. B. Diagnosestellung). Zur Erstellung einer ROC-Kurve müssen für jede Beobachtungseinheit bekannt sein: (1) (Nicht-)Vorliegen des zu identifizierenden Ereignisses E (z. B. «0» = «gesund» oder «Signal nicht vorhanden» , «1» = «krank»  oder «Signal vorhanden»; (2) eine metrische Größe X (z. B. «Testscore»), für die die Prädiktionsleistung für das Ereignis E analysiert werden soll. Für jeden Wert x_{i} der Variable X kann dann für alle Beobachtungseinheiten festgelegt werden, dass bei einem Wert größer-gleich (vs. kleiner) x_{i} in E der Wert «1» (vs. «0») diagnostiziert wird (cut-off point). Die ROC-Kurve wird dann erstellt, indem für jeden Trennwert x_{i} (1) der Anteil korrekt vorhergesagter Merkmalsträger (richtig Positive; Sensitivität, Vierfeldertafel) als Ordinatenwert und (2) der Anteil von Beobachtungeinheiten, für die fälschlicherweise das Vorliegen des Merkmals (falsch Positive; 1-Spezifität) diagnostiziert wird, als Abszissenwert verwendet wird. Im Falle einer Zufallsvorhersage entspricht die ROC-Kurve der Winkelhalbierenden im Koordinatensystem. Je besser die Vorhersagegüte, desto stärker weicht die dann konvexe Kurve pos. von der Winkelhalbierenden ab. Als Area-under-the-curve (AUC; [engl.] Fläche unter der Kurve) wird die Fläche unter der ROC-Kurve bez. Im Falle einer Zufallsvorhersage beträgt diese 0,5. Je besser die Vorhersagegüte ist, desto mehr nähert sich AUC dem Wert 1 an. Der AUC-Wert kann als Wahrscheinlichkeit für die korrekte Erkennung eines Merkmalsträgers interpretiert werden. Die ROC-Analyse kann zudem zur Bestimmung optimaler diagn. Cut-Off-Werte genutzt werden. Bspw. auf Basis des Youden-Index:

Youden Index = Sensitivität + Spezifität – 1

Der optimale Cut-Off-Wert in X entspricht demjenigen Wert x_{i}, für den der Youden-Index max. ist. Diagnostik, kategoriale,Interventionseffekt bei dichotomen Zielgrößen, Regression, logistische, Signalentdeckungstheorie.

Referenzen und vertiefende Literatur

Die Literaturverweise stehen Ihnen nur mit der Premium-Version zur Verfügung.

Datenschutzeinstellungen

Wir verwenden Cookies und Analysetools, um die Sicherheit und den Betrieb sowie die Benutzerfreundlichkeit unserer Website sicherzustellen und zu verbessern. Weitere informationen finden Sie unter Datenschutz. Da wir Ihr Recht auf Datenschutz respektieren, können Sie unter „Einstellungen” selbst entscheiden, welche Cookie-Kategorien Sie zulassen möchten. Bitte beachten Sie, dass Ihnen durch das Blockieren einiger Cookies möglicherweise nicht mehr alle Funktionalitäten der Website vollumfänglich zur Verfügung stehen.